If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=34=10x
We move all terms to the left:
x^2-(34)=0
a = 1; b = 0; c = -34;
Δ = b2-4ac
Δ = 02-4·1·(-34)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{34}}{2*1}=\frac{0-2\sqrt{34}}{2} =-\frac{2\sqrt{34}}{2} =-\sqrt{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{34}}{2*1}=\frac{0+2\sqrt{34}}{2} =\frac{2\sqrt{34}}{2} =\sqrt{34} $
| 4n-2=13 | | 5(9(2*x)=(3*x)+10 | | 5*(9+2x)=4x+9 | | 21+52s=s−43 | | 5(9(2*x)=(x3)+10 | | 14y2–13y+3=0 | | 104=5y-2+4y+5y-2+4y | | 8-2x=5x+1 | | 5x=25+ | | (6+z)(5z+7)=0 | | 6z+24=-6 | | 0.75x+4.125=0.625 | | 15/2=4/x | | 6y+5=6(y+2)-7 | | 2x=8/10 | | 0.75+0.25a=0.5 | | 17+2x=77 | | 4z+8=4(z+4)-8 | | (6+z)(5+z)=0 | | -18+9c=27 | | 118=3x+3+4x+3x+3+4x | | -104=2x | | 3*(1+x)=7+x | | 40x+10(1.5×)=1846 | | -2a-5=8a-15 | | 11+4x=-5 | | 114=2x-1+3x+3+2x-1+3x+3 | | (X+1)(2x+3)=5+(2x-7)(x+4) | | 7,-4=5n+16 | | 13x+12x=31+19 | | 4/7(t-3)-39/7=-6 | | 85=2l-22 |